

ORIENT

Photocoupler

Product Data Sheet

Name:	ORPC-817SC
Customer:	
Date:	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A 3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD

TEL: 0755-29681816 FAX: 0755-29681200 www.orient-opto.com

1. Features

(1) Current transfer ratio (CTR: MIN. 100% at $I_F = 5mA$, $V_{CE} = 5V$)

(2) High input-output isolation voltage (Viso = 5,000Vrms)

(3) Response time (tr : TYP. $4\mu s$ at $V_{CE} = 10V$, $I_C = 2mA$, $R_L = 100\Omega$)

(4) Safety approval

UL approved (No.E323844) VDE approved (No.40029733)

CQC approved (No.CQC09001029446 CQC13001086898)

CE approved (No.AC/0431008)

State Grid approved (No.SGCM013420170152)

2. Description

(1) ORPC-817SC photocoupler consist of one piece of GaAs emitter and one piece of NPN transistor.

(2) They are packaged in a 4-pin DIP package and available in wide-lead spacing and SMD option.

3. Applications

(1) Switching power supply

(2) Ammeter

(3)Computer

- (4) Instrumental application, measurement machine
- (5) Imbursement equipments, duplicating machine, automat
- (6) Family-use electric equipments, such as fans
- (7) Signal transforming systems

4. Absolute Maximum Ratings at Ta=25℃

	Parameter	Symbol	Rated Value	Unit
	Forward Current	l _F	60	mA
Input	Peak forward current (100µs pulse, 100Hz frequency)	I _{FP}	1	A
'	Reverse Voltage	V_R	6	V
	Consume Power	Р	70	mW
	Collector and emitter Voltage	V_{CEO}	80	V
Output	Emitter and collector Voltage	V _{ECO}	6	V
Output	Collector Current	lc	50	mA
	Consume Power	Pc	150	mW
Total Consume Power		P _{tot}	200	mW
*1 Insulation \	Voltage	V _{iso}	5,000	Vrms
Max Insulat	tion Voltage (Insulating oil test)	V_{IOTM}	10,000	V
Rated Impu	ılse Insulation Voltage	V_{IORM}	630	V
Working Temperature		Topr	-55 to + 110	
Deposit Temperature		T _{stg}	-55 to + 125	${\mathbb C}$
*2 Soldering Temperature		T_{sol}	260	

*1.AC For 1 Minute, R.H. = 40 ~ 60%

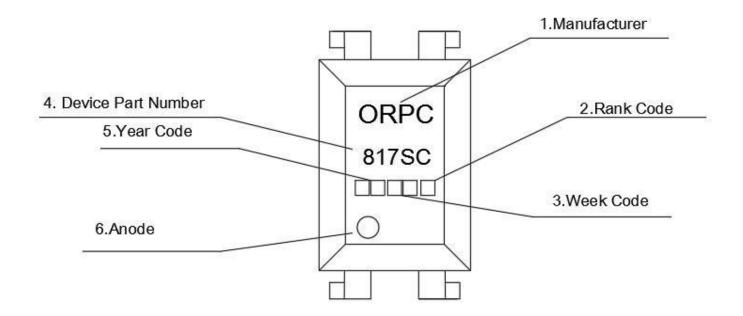
Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. Soldering time is 10 seconds

5. Electro-Optical Characteristics (Ta=25℃ unless specified otherwise)

Pa	rameter	Symbol	Condition	Min	Typ.*	Max	Unit
	Forward Current	V_{F}	I _F =10mA	1.0		1.3	V
Input	Reverse Voltage	I_R	V _R =5V			10	μΑ
	Collector capacitance	C_{t}	V=0, f=1KHz		30	250	pF
	Collector to emitter Current	I_{CEO}	V _{CE} =24V, I _F =0mA			200	nA
Output	Collector and Emitter attenuation Voltage	$\mathrm{BV}_{\mathrm{CEO}}$	I _C =0.1mA I _F =0mA	80			V
	Emitter and Collector attenuation Voltage	$\mathrm{BV}_{\mathrm{ECO}}$	I _E =10uA I _F =0mA	7			V
	*1 Current conversion ratio	CTR		100		600	%
	Collector Current	I_{C}	IF=5mA VCE=5V	5		30	mA
	Collector and Emitter Saturation Voltage	$V_{\text{CE(sat)}}$	I_F =20mA I_C = 1mA		0.1	0.2	V
Transforming Characteristics	Insulation Impedance	R_{iso}	DC500V 40~60%R.H.	1×10 ¹²			Ω
	Floating Capacitance	C_{f}	V=0, f=1MHz		0.6	1.0	pF
	Cut-off Frequency	f_{c}	$V_{CE}=5V,$ $I_{C}=2mA$ $R_{L}=100\Omega, -3dB$		80		kHz
	Rise Time	$t_{\rm r}$	$V_{CC}=10V$, $I_{C}=2mA$		4	12	μs
	Descend Time	t_{f}	$R_L=100\Omega$		3	12	μs

^{*1} Current Conversion Ratio = I_C / I_F × 100% , CTR Tolerance: $\pm 3\%$.

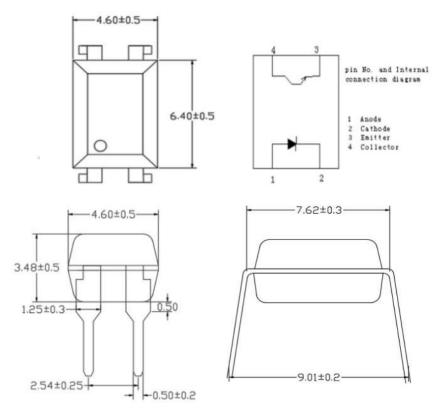


6. Rank Table of Current Transfer Ratio

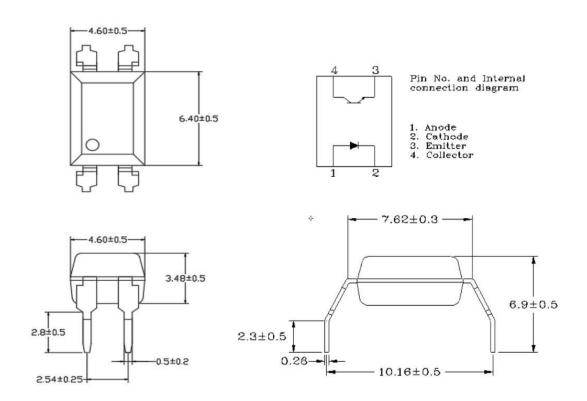
Grad e Sign	Min (%)	Max (%)
A	100	160
В	130	260
С	200	400
D1	300	500
D2	400	600

Note: Working condition: $I_F=5mA$, $V_{CE}=5V$, $T_a=25$ °C.

7. Naming Rule

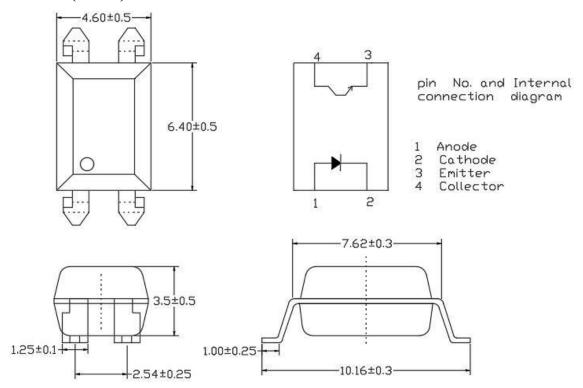


- (1)ORPC denotes Shenzhen Orient Tech Ltd . Co ., Ltd.
- (2) denotes Rank code.
- (3) denotes Week code.
- (4) denotes Device Part Number.
- (5) denotes Year Code
- (6) Anode.
- (7) Unit:mm

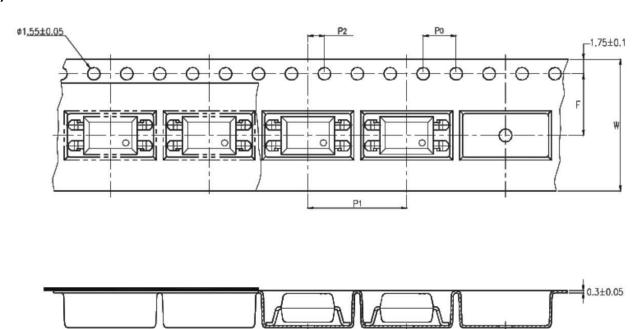


8. Package Dimension (Unit: mm)

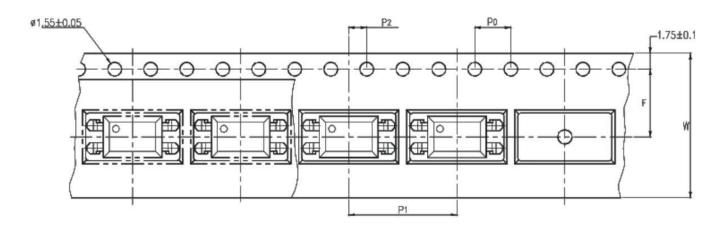
(1) ORPC-817SC (DIP)



(2) ORPC-817SC (M)

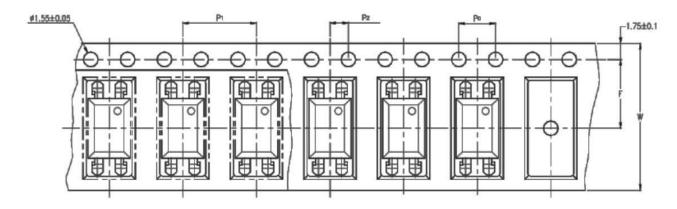


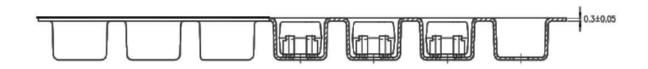
(3) ORPC-817SC (SOP)


9. Taping Dimensions


(1) ORPC-817SC-TA

(2) ORPC-817SC-TA1



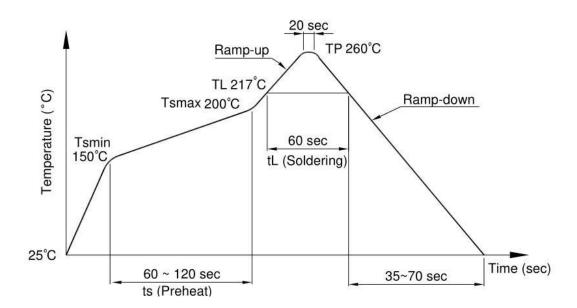

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (.63)
Pitch of sprocket holes	P ₀	4±0.1 (.15)
Distance of compartment	F	7.5±0.1 (.295)
Distance of compartment	P2	2±0.1 (.0079)
Distance of compartment to compartment	P1	12±0.1 (.472)

Package Type	TA/TA1
Quantities(pcs)	1000

(3) ORPC-817SC-TP

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (.63)
Pitch of sprocket holes	P ₀	4±0.1 (.15)
Distance of compartment	F	7.5±0.1 (.295)
Distance of compartment	P2	2±0.1 (.0079)
Distance of compartment to compartment	P1	8±0.1 (.472)

Package Type	TP
Quantities(pcs)	2000

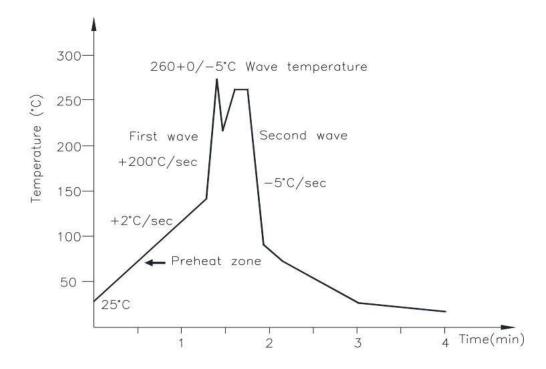


10. Temperature Profile Of Soldering

(1).IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (TL)	217°C
- Time (t _L)	60 sec
Peak Temperature(T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec



(2). Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature	260+0/-5°C
Time	10 sec
Preheat temperature	25 to 140°C
Preheat time	30 to 80 sec

(3). Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

11. Characteristics Curves

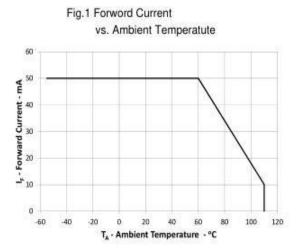


Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

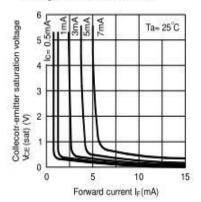


Fig.2 Collector Power Dissiption vs. Ambient Temperature

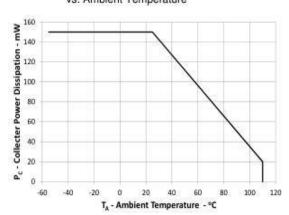


Fig.4 Forward Current vs. Forward Voltage

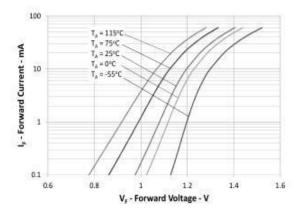


Fig.5 Current Transfer Ratio vs. Forward Current

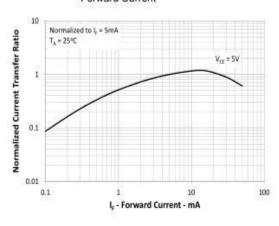


Fig.6 Collector Current vs. Collector-emitter Voltage

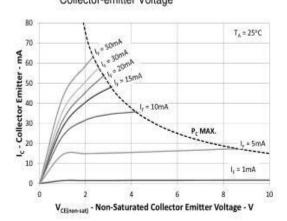


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

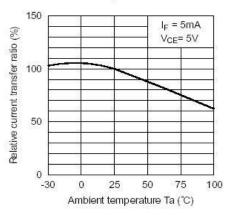


Fig.9 Collector Dark Current vs. Ambient Temperature

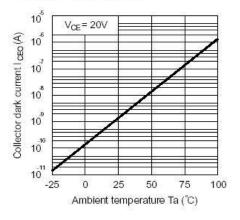


Fig.11 Frequency Response

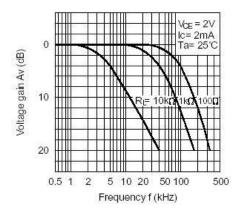
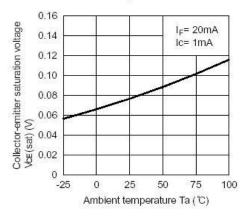
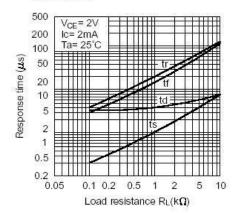
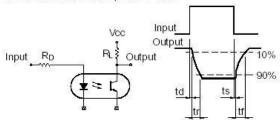
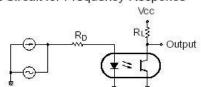


Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature


Fig.10 Response Time vs. Load Resistance

Test Circuit for Response Time

Test Circuit for Frequency Response

► Notes:

- ①ORIENT is continually improving the quality, reliability, function or design and ORIENT reserves the right to make changes without further notices.
- ②When using this product, please observe the absolute maximum ratings and the instructions for use as outlined in this datasheet. ORIENT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in this datasheet.
- 3 If there are any questions about the contents of this publication, please contact us at your convenience.